Butterfly Valve BF-736 ## Introduction of the valve The two pieces of body wafer type butterfly valve and a concentric disc and seat configuration to with whole pack age PTFE sealed structure, takes whole package PTFE painting skills for the body. The painting thickness can reach up to 3~4mm ,which effectively avoids the direct interaction between the body and the medium and the medium's corrosion for the body. Different painting skills and materials of valve's disc are taken according to the customer's need, such as PTFE and nylon painting, stainless steel and bronze material for the body, etc. #### **Features** Absolutely tight sealing with flow in either direction The valve body and disc are accurately machined which results in low operating torque and long service life and reliability PTFE liner seated prevents corrosion and guarantees long service life Can be disassembled, material specific recycling possible Can be installed at the end of pipe for lugged type butterfly valve ## General Applications The products are used in a wide range of industries worldwide including: - · Chemical and petrochemical industries - Water & Wastewater Treatment - · Pneumatic materials handling technology - Shipbuilding - Food Processing - · Petroleum Refining & Oilfield - Power generation industry - Mining - Irrigation - Textile - Desalination - Steel Production - · Sugar/Ethanol - HVAC #### Parts of name and purpose (DN50-DN300) NECK: An extended neck design in all valve sizes allows for 2" of piping insulation and provides easy access for mounting actuators. #### FLANGE LOCATING HOLES: Locating holes in the wafer version provide quick and precise alignment during valve installation eliminating disc interference with adjacent pipe I.D. DISC: The PTFE disc has 1/8" (3 mm) minimum thickness of pure, virgin PTFE encapsulated over Stainless Steel. design reduces seating unseating torque and, at the same time, reduces wear on the contacting parts. Curvatures machined into the inner seat area minimize contact forces between the disc and seat as the disc approaches, or opens from, the closed position. This unique seat geometry permits lower torques and reduces seat wear. TOP STEM BUSHING: A top stem bushing, retained by a stainless steel ring, is provided to absorb actuator side thrusts and is acetal as standard or PTFE as an option BODY: Bodies are two piece wafer style and are epoxy coated. All bodies meet full ASME Class 150 and DIN 3840 pressure ratings Seat Energizer: A resilient seat energizer extends comp- provides uniform force sufficient for bubble-tight shut off. letely around the seat, including the disc hub. This for hydrostatic requirements. ### Parts of name and purpose (DN50-DN200) seat geometry permits lower torques and reduces seat wear. TOP STEM BUSHING: A top stem bushing, retained by a stainless steel ring, is provided to absorb actuator side thrusts and is acetal as standard or PTFE as an option NECK: An extended neck design BODY: Bodies are two piece lug style and are epoxy in all valve sizes allows for 2" of coated. piping insulation and provides easy All bodies meet full ASME Class 150 and DIN 3840 access for mounting actuators. pressure ratings for hydrostatic requirements. DISC: The PTFE disc has 1/8" (3 mm) minimum thickness of pure, virgin PTFE encapsulated over Stainless Steel. Seat Energizer: A resilient seat energizer extends completely around the seat, including the disc hub. This provides uniform force sufficient for bubble-tight shut off. SEAT DESIGN: The seat design reduces seating unseating torque and, at the same time, reduces wear on the contacting parts. Curvatures machined into the inner seat area minimize contact forces between the disc and seat as the disc approaches, or opens from, the closed position. This unique ### Parts of name and purpose (DN350-DN900) NECK: An extended neck design in all valve sizes allows for 2" of piping insulation and provides easy access for mounting actuators. ## Key Design Disc spring, two sets for a group, is a state of compressive deformation in the body. It will impose elastic force on the press sleeve, compact the O ring and seat, improve axial sealing, then provided the bearing stress for the seat and disc, to cover the shortage of elasticity about PTFE seat. The seat is designed as shown in the figure, the advantage of this design is better sealing, effectively preventing the media leakage from the valve cavity. #### TOP STEM BUSHING: The bushing can assure the correct interaction between the upper shaft and the lower shaft, at the same time, it can make sure the smooth running of the shaft. SEAT DESIGN: The seat design reduces seating unseating torque and, at the same time, reduces wear on the contacting parts. Curvaturesmachined into the inner seat area minimize contact forces between the disc and seat as the disc approaches, or opens from, the closed position. This unique seat geometry permits lower torques and reduces seat wear. #### Seat Energizer: A resilient seat energizer extends completely around the seat, including the disc hub. This provides uniform force sufficient for bubble-tight shut off. Extensive field research and engineering have developed this state of the art design which provides excellent shut off protection (bubbletight shut off) and high Cv values. The Series BF-736 is crafted in a variety of materials such as PTFE, Stainless Steel, UHMWPE and special alloys to fit a wide range of customer requirements. As with all WORLDS's products, precision manufacturing and exceptional quality remain the keys to a proven record of long service life. ## Technical Date(DN50-DN900) #### Design Standard EN593 API 609 BS5155 MSS SP-67 #### Face to Face DIN558-1 API609 DIN3202 K1 ISO5752 BS5155 #### Testing Inspection EN 12266-1 ISO5208 API598 #### Flange Accommodation ASME B 16.1 125LB ASME B 16.5 150LB BS4504 PN10/16 DIN2501 PN10/16 ISO7005 PN10/16 EN1092 PN10/16 #### Top Flange ISO 5211(accroding to the custumer need) #### Temperature Range - 35 to +200(depending on pressure, medium and material) #### Suitable Medium flesh water, waste water, sewage, seawater, air, vapor, food, oils, medicine alkailis, salt, ect #### Max Working Pressure DN50-DN250 16Bar DN300-DN900 10Bar ## Main Spare Part Material Quality (DN50-DN300) ## Main Spare Part Material Quality (DN350-DN900) ### Main Spare Part Material Quality (DN50-DN200) Bushing PTFE Up Body GG20 GG25 GGG40 GGG45 GGG50 WCB WCC LCC LCB CF8 CF8M CF3 CF3M C95800 C95400 Up Shaft SS410 SS304 SS431 SS316 MONEL K500 17-4PH C63000 C92200 2507 2205 Spring Planet Spring Steel Gland Stainless Steel "O"Ring FKM Seat Energizer Silicone Body seat PTFE/PFA Disc GGG40 GGG45 GGG50+PTFE/PFA WCB WCC LCC LCB+PTFE/PFA CF8 CF8M CF3 CF3M+PTFE/PFA C95400 C95500 C95800+PTFE/PFA Seat Energizer Silicone 10 FKM "O"Ring Stainless Steel Gland Spring Planet 13 Spring Steel Down Shaft SS410 SS304 SS431 SS316 MONEL K500 17-4PH C63000 C92200 2507 2205 15 Down Body GG20 GG25 GGG40 GGG45 GGG50 WCB WCC LCC LCB CF8 CF8M CF3 CF3M C95800 C95500 C95400 Hex Bolts Stainless Steel | lain Spare Part Material Quality (DN25 | 0-DN600) | | |--|----------------|---| | 1 | Bushing | PTFE | | 2 | Up Body | GG20 GG25 | | | | GGG40 GGG45 GGG50 | | | | WCB WCC LCC LCB | | | | CF8 CF8M CF3 CF3M | | | | C95800 C95400 | | 3 | Up Shaft | SS410 SS304 SS431 SS316 | | | | MONEL K500 17-4PH | | | | C63000 C92200 | | | | 2507 2205 | | 4 | Spring Planet | Spring Steel | | 5 | Gland | Stainless Steel | | 6 | "O"Ring | FKM | | 7 | Seat Energizer | Silicone | | 8 | Body seat | PTFE/PFA | | | Disc | GGG40 GGG45 GGG50+PTFE/PFA | | | | WCB WCC LCC LCB+PTFE/PFA | | | | CF8 CF8M CF3 CF3M+PTFE/PFA | | | | C95400 C95500 C95800 +PTFE/PF | | _10 | Seat Energizer | Silicone | | 11 | "O"Ring | FKM | | 12 | Gland | Stainless Steel | | 13 | Spring Planet | Spring Steel | | 14 | Down Shaft | SS410 SS304 SS431 SS316 | | | | MONEL K500 17-4PH | | 6/// | | C63000 C92200 | | 0// | | 2507 2205 | | 15 | Down Body | GG20 GG25 | | ? / | | GGG40 GGG45 GGG50 | | | | WCB WCC LCC LCB | | | | CF8 CF8M CF3 CF3M | | 16 | Hex Bolts | C95800 C95500 C95400
Stainless Steel | | | | | # Drawing (RFBF04-TA01-DN50-DN600) ## **Outline Dimensions** | SIZE | L | A | Н | CxC | IS05211 | D2 | D3 | n - Ø | Ø2 | |-------|-----|-----|----|--------------|---------|-------|-------|--------------|--------| | DN50 | 43 | 140 | 14 | 9 x 9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN65 | 46 | 150 | 14 | 9 x 9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN80 | 46 | 160 | 14 | 9 x 9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN100 | 52 | 178 | 14 | 11x11 | F07 | 90 | 70 | 4-10 | 15.77 | | DN125 | 56 | 190 | 17 | 14x14 | F07 | 90 | 70 | 4-10 | 18. 92 | | DN150 | 56 | 200 | 17 | 14x14 | F07 | 90 | 70 | 4-10 | 18. 92 | | DN200 | 60 | 240 | 22 | 17x17 | F10 | 125 | 102 | 4-12 | 22. 10 | | DN250 | 68 | 273 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 28. 45 | | DN300 | 78 | 310 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 31.60 | | DN350 | 78 | 346 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 31.60 | | DN400 | 102 | 375 | 36 | 27x27 | F14 | 175 | 140 | 4-18 | 33, 15 | | DN450 | 114 | 406 | 36 | 27x27 | F14 | 175 | 140 | 4-18 | 37.95 | | DN500 | 127 | 438 | 36 | 36x36 | F14 | 175 | 140 | 4-18 | 45. 72 | | DN600 | 154 | 495 | 46 | 36x36 | F16 | 210 | 165 | 4-22 | 50.62 | # Drawing (RFBF04-TL01-DN50-DN600) # **Outline Dimensions** | SIZE | L | A | Н | CxC | IS05211 | D2 | D3 | n - Ø | Ø2 | |-------|-----|-----|----|-------|---------|-------|-------|--------------|--------| | DN50 | 43 | 140 | 14 | 9x9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN65 | 46 | 150 | 14 | 9x9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN80 | 46 | 160 | 14 | 9x9 | F07/F05 | 90/65 | 70/50 | 4-10/7 | 12.6 | | DN100 | 52 | 178 | 14 | 11x11 | F07 | 90 | 70 | 4-10 | 15.77 | | DN125 | 56 | 190 | 17 | 14x14 | F07 | 90 | 70 | 4-10 | 18. 92 | | DN150 | 56 | 200 | 17 | 14x14 | F07 | 90 | 70 | 4-10 | 18. 92 | | DN200 | 60 | 240 | 22 | 17x17 | F10 | 125 | 102 | 4-12 | 22. 10 | | DN250 | 68 | 273 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 28. 45 | | DN300 | 78 | 310 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 31.60 | | DN350 | 78 | 346 | 22 | 22x22 | F10 | 125 | 102 | 4-12 | 31.60 | | DN400 | 102 | 375 | 36 | 27x27 | F14 | 175 | 140 | 4-18 | 33, 15 | | DN450 | 114 | 406 | 36 | 27x27 | F14 | 175 | 140 | 4-18 | 37. 95 | | DN500 | 127 | 438 | 36 | 36x36 | F14 | 175 | 140 | 4-18 | 45. 72 | | DN600 | 154 | 495 | 46 | 36x36 | F16 | 210 | 165 | 4-22 | 50.62 | # Drawing (RFBF04-TA01-DN700-DN900) # Outline Dimensions (Wafer) | SIZE | L | A | Н | J | IS05211 | D2 | D3 | n−ø | ø2 | |-------|-----|-----|-----|----|---------|-----|-----|------|--------| | DN700 | 165 | 600 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63.35 | | DN750 | 165 | 610 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63. 35 | | DN800 | 190 | 672 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63. 35 | | DN900 | 203 | 720 | 110 | 20 | F25 | 300 | 200 | 8-18 | 75 | # Drawing (RFBF04-TL01-DN700-DN900) ## Outline Dimensions (Lug) | SIZE | L | A | Н | J | IS05211 | D2 | D3 | n−ø | ø2 | |-------|-----|-----|-----|----|---------|-----|-----|------|-------| | DN700 | 165 | 600 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63.35 | | DN750 | 165 | 610 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63.35 | | DN800 | 190 | 672 | 110 | 18 | F25 | 300 | 200 | 8-18 | 63.35 | | DN900 | 203 | 720 | 110 | 20 | F25 | 300 | 200 | 8-18 | 75 | ## Torque values-Nm | F | RFBF | 04-TA01 | | R | FBF0 | 4-TL01 | | | |-------|------|------------|------------|--------------|------|------------|------------|--| | SIZ | E | 10 Bar | 16 Bar | SIZ | Έ | 10 Bar | 16 Bar | | | mm | inch | wet (N .m) | wet (N .m) | mm | inch | wet (N .m) | wet (N .m) | | | DN40 | 1.5" | 18 | 20 | DN40 | 1.5" | 18 | 20 | | | DN50 | 2" | 20 | 25 | DN50 | 2" | 20 | 25 | | | DN65 | 2.5" | 30 | 35 | DN65 | 2.5" | 30 | 35 | | | DN80 | 3" | 40 | 45 | DN80 | 3" | 40 | 45 | | | DN100 | 4" | 65 | 75 | DN100 | 4" | 65 | 75 | | | DN125 | 5" | 100 | 120 | DN125 | 5" | 100 | 120 | | | DN150 | 6" | 150 | 160 | DN150 | 6" | 150 | 160 | | | DN200 | 8" | 290 | 320 | DN200 | 8" | 290 | 320 | | | DN250 | 10" | 430 | 460 | DN250 | 10" | 430 | 460 | | | DN300 | 12" | 560 | 650 | DN300 | 12" | 560 | 650 | | | DN350 | 14" | 732 | 850 | DN350 | 14" | 732 | 850 | | | DN400 | 16" | 1300 | | DN400 | 16" | 1300 | | | | DN450 | 18" | 1700 | | DN450 | 18" | 1700 | | | | DN500 | 20" | 2700 | | DN500 | 20" | 2700 | | | | DN600 | 24" | 4200 | | DN600 | 24" | 4200 | | | ## NOTICE: The above torque data based on 25° C purified water not include safety factor. # Connection Dimensisns (RFBF04-TA01-DN50-DN900) | | Outer I | Diamet | ter Of | Flange | Diameter Of Center Circle | | | | Number And Diameter Of
Bolt Holes | | | | |-----|---------|--------|--------|--------|---------------------------|------|------|--------|--------------------------------------|-------|-------|--------| | DN | 150LB | PN10 | PN16 | JIS10K | 150LB | PN10 | PN16 | JIS10K | 150LB | PN10 | PN16 | JIS10K | | 50 | 150 | 165 | 165 | 155 | 120.7 | 125 | 125 | 120 | 4-19 | 4-19 | 4-19 | 4-19 | | 65 | 180 | 185 | 185 | 175 | 139.7 | 145 | 145 | 140 | 4-19 | 4-19 | 4-19 | 4-19 | | 80 | 190 | 200 | 200 | 185 | 152.4 | 160 | 160 | 150 | 4-19 | 8-19 | 8-19 | 8-19 | | 100 | 230 | 220 | 220 | 210 | 190.5 | 180 | 180 | 175 | 8-19 | 8-19 | 8-19 | 8-19 | | 125 | 255 | 250 | 250 | 250 | 215.9 | 210 | 210 | 210 | 8-22 | 8-19 | 8-19 | 8-23 | | 150 | 280 | 285 | 285 | 280 | 241.3 | 240 | 240 | 240 | 8-22 | 8-23 | 8-23 | 8-23 | | 200 | 345 | 340 | 340 | 330 | 298.5 | 295 | 295 | 290 | 8-22 | 8-23 | 12-23 | 12-23 | | 250 | 405 | 395 | 405 | 400 | 362 | 350 | 355 | 355 | 12-26 | 12-23 | 12-28 | 12-25 | | 300 | 485 | 445 | 460 | 445 | 431.8 | 400 | 410 | 400 | 12-26 | 12-23 | 12-28 | 16-25 | | 350 | 535 | 505 | 520 | 490 | 476.3 | 460 | 470 | 445 | 12-29 | 16-23 | 16-28 | 16-25 | | 400 | 595 | 565 | 580 | 560 | 539.8 | 515 | 525 | 510 | 16-29 | 16-28 | 16-31 | 16-27 | | 450 | 635 | 615 | 640 | 620 | 577.9 | 565 | 585 | 565 | 16-32 | 20-28 | 20-31 | 20-27 | | 500 | 700 | 670 | 715 | 675 | 635 | 620 | 650 | 620 | 20-32 | 20-28 | 20-34 | 20-27 | | 600 | 815 | 780 | 840 | 795 | 749.3 | 725 | 770 | 730 | 20-35 | 20-31 | 20-37 | 24-33 | | 700 | 927 | 895 | 910 | 905 | 863.6 | 840 | 840 | 840 | 28-35 | 24-31 | 24-37 | 24-33 | | 800 | 1060 | 1015 | 1025 | 1020 | 977.9 | 950 | 950 | 950 | 28-42 | 24-34 | 24-41 | 28-33 | | 900 | 1168 | 1115 | 1125 | 1120 | 1085.85 | 1050 | 1050 | 1050 | 32-42 | 28-34 | 28-41 | 28-33 | # Connection Dimensisns (RFBF04-TL01-DN50-DN900) | | Outer I | Diamet | ter Of F | lange | Diamete | or Of C | Center | Circle | Number An | d Diame | ter Of B | olt | |-----|---------|--------|----------|--------|---------|---------|--------|--------|--|---------|----------|--------| | DN | 150LB | PN10 | PN16 | JIS10K | 150LB | PN10 | PN16 | JIS10K | 150LB | PN10 | PN16 | JIS10K | | 50 | 150 | 165 | 165 | 155 | 120.7 | 125 | 125 | 120 | 4-8"-11UNC | 4-M16 | 4-M16 | 4-M16 | | 65 | 180 | 185 | 185 | 175 | 139.7 | 145 | 145 | 140 | 4-8"-11UNC | 4-M16 | 4-M16 | 4-M16 | | 80 | 190 | 200 | 200 | 185 | 152.4 | 160 | 160 | 150 | 4-8"-11UNC | 8-M16 | 8-M16 | 8-M16 | | 100 | 230 | 220 | 220 | 210 | 190.5 | 180 | 180 | 175 | 8-8"-11UNC | 8-M16 | 8-M16 | 8-M16 | | 125 | 255 | 250 | 250 | 250 | 215.9 | 210 | 210 | 210 | 8-3"-10UNC | 8-M16 | 8-M16 | 8-M20 | | 150 | 280 | 285 | 285 | 280 | 241.3 | 240 | 240 | 240 | 8-3-10UNC | 8-M20 | 8-M20 | 8-M20 | | 200 | 345 | 340 | 340 | 330 | 298.5 | 295 | 295 | 290 | 8-3"-10UNC | 8-M20 | 12-M20 | 12-M20 | | 250 | 405 | 395 | 405 | 400 | 362 | 350 | 355 | 355 | 12-7-9UNC | 12-M20 | 12-M24 | 12-M22 | | 300 | 485 | 445 | 460 | 445 | 431.8 | 400 | 410 | 400 | 12-7-9UNC | 12-M20 | 12-M24 | 16-M22 | | 350 | 535 | 505 | 520 | 490 | 476.3 | 460 | 470 | 445 | 12-1"-8UNC | 16-M20 | 16-M24 | 16-M22 | | 400 | 595 | 565 | 580 | 560 | 539.8 | 515 | 525 | 510 | 16-1"-8UNC | 16-M24 | 16-M27 | 16-M24 | | 450 | 635 | 615 | 640 | 620 | 577.9 | 565 | 585 | 565 | 16-1 ¹ / ₈ -8UN | 20-M24 | 20-M27 | 20-M24 | | 500 | 700 | 670 | 715 | 675 | 635 | 620 | 650 | 620 | 20-1 ¹ / ₈ -8UN | 20-M24 | 20-M30 | 20-M24 | | 600 | 815 | 780 | 840 | 795 | 749.3 | 725 | 770 | 730 | 20-1 ¹ / ₄ "-8UN | 20-M27 | 20-M33 | 24-M30 | | 700 | 927 | 895 | 910 | 905 | 863.6 | 840 | 840 | 840 | 28-1 ¹ / ₄ "-8UN | 24-M27 | 24-M33 | 24-M30 | | 800 | 1060 | 1015 | 1025 | 1020 | 977.9 | 950 | 950 | 950 | 28-1 ¹ / ₂ "-8UN | 24-M30 | 24-M36 | 28-M30 | | 900 | 1168 | 1115 | 1125 | 1120 | 1085.85 | 1050 | 1050 | 1050 | 32-12"-8UN | 28-M30 | 28-M36 | 28-M30 | ## Head losses ## Formulae for calculation of rate flow Notes: Values indicated in this page is only for information Liquids: $$Q = \frac{KV}{\sqrt{\frac{PS}{\Delta P}}}$$ Q rate of flow (m3/h) PS specific gravity (water=1) ΔP pressure drop (bar) Gas: $$Q = 28.5 \frac{KV}{\sqrt{\frac{PS}{P. \Delta P}}}$$ Q rate of flow (m3/h) PS specific gravity (air=1) ΔP pressure drop (bar) (less than 1/2 inlet pressure) outlet pressure Steam: Q = 22.5 · KV · $$\sqrt{P_2 \cdot \Delta P}$$ Q rate of flow (Kg/h) ΔP pressure drop (bar) (less than 1/2 inlet pressure) P2 outlet pressure Calculation of the rate of flow equivalent to H2O: For different liquid, gas or steam head losses are determined by equivalent water of flow, as follosw: Qe equivalent water flow (mc/l o l/s) Q fluid flow (mc/l o l/s) d fluid specific gravity (Kg/mc) ### Values CV (CV=1. 16KV) | | | Flow in | n Gpm@1 PS | SI P@ Var: | ious Disc | Angles | | | Full 90° | |------|-------|---------|------------|------------|-----------|--------|-------|-------|----------| | (mm) | 10° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 0pen | | 40 | 0.04 | 3 | 6 | 12 | 23 | 32 | 46 | 60 | 69 | | 50 | 0.08 | 4 | 10 | 20 | 38 | 54 | 77 | 106 | 115 | | 65 | 0.17 | 7 | 17 | 31 | 55 | 83 | 122 | 173 | 187 | | 80 | 0.26 | 10 | 19 | 33 | 60 | 99 | 156 | 234 | 257 | | 100 | 0.43 | 14 | 31 | 66 | 118 | 196 | 309 | 464 | 510 | | 125 | 0.68 | 25 | 52 | 113 | 201 | 333 | 527 | 791 | 869 | | 150 | 1.7 | 38 | 81 | 174 | 311 | 514 | 814 | 1221 | 1342 | | 200 | 2. 55 | 76 | 160 | 347 | 618 | 1022 | 1618 | 2426 | 2666 | | 250 | 3.4 | 128 | 272 | 590 | 1051 | 1740 | 2754 | 4130 | 4539 | | 300 | 4.3 | 199 | 421 | 911 | 1624 | 2688 | 4254 | 6381 | 7013 | | 350 | 5 | 287 | 608 | 1317 | 2347 | 3883 | 6146 | 9217 | 10129 | | 400 | 7 | 394 | 836 | 1811 | 3227 | 5340 | 8451 | 12676 | 13930 | | 450 | 9 | 523 | 1107 | 2399 | 4274 | 7072 | 11193 | 16789 | 18449 | | 500 | 12 | 825 | 1423 | 3084 | 5495 | 9093 | 14391 | 21587 | 23722 | | 600 | 19 | 1039 | 2199 | 4764 | 8491 | 14049 | 22233 | 33351 | 36649 | ### Installation Instructions The butterfly valve can be installed on the pipeline, which is at any angle. - 1.The valve should be installed in the location being sure to provide convenient operation, maintenance and replacement. - 2.As mounting the butterfly valve, fail to consider flow direction of mediums in pipeline, that is to say, the valve can be used in double way. - 3.Before installation, the butterfly valve should be stored in ware house and prevent it from moisture and in so doing, the disc should be kept to open at an angle of 15 degree. - 4. Before installation, the following processes should be completed: - (1)Check carefully and confirm the operation condition of the valve is in line with the technical specification and requirements. - (2)Clean the disc sealing area and body sealing completely. It is not permitted to open the disc before cleaning. - (3)Check and confirm the handle is strongly collected to the flange and stem. - 5.As mounting the butterfly valve in pipeline, the load for tightening connection bolts should be uniformed. - 6.After installation, the disc must be opened in the case of the strength pressure test on pipeline being carried out. - 7.After being installed, the valve should be examined regularly. The main item to be checked are as follows: - (1) Whether the valve seat and 'O' sealing ring have been damaged. - (2) Check the sealing effects of the disc sealing area. - (3)After the valve was examined and assembled, no scuffing happens at the time of on-off rotation. - (4)After the valve was examined and assembled, the sealing test should be carried out as the introduction. - (5)After each examination, detailed records should be filed for reference. ## INSTALLATION 1 Leave a space between flanges so that valve can be easily inserted and removed .and move the valve in accordance with the arrow 2 Open completely the valve before tightening flanges 3 Tighten bolts till flanges are in contact with valve body 4 NOTE: do not insert other packing between flange and valve NOTE:Weld the pipe only in spots with the valve between flanges. Remove the valve before finishing welding to avoid that heat damage the seat. Clean carefully the welding to avoid that slags damage the seat #### Installation for powders and muddy fluids In case of use with powders or muddy fluids,install the valve with horizontal rotation axis,to allow sediments to flow easily on opening Wrong Vertical rotation axis Right Horizontal rotation axis ## End piping installation When valves are installed end of piping, a counterflange as per dwg type B is needed to secure tightness at max peressure. Please notice in order when the valves are installed as per drawing type A. Type A installation without end piping Type B installation with end piping Pressure (max): Type A installation is 6 Bar Type B installation is 16 Bar # Length & Quantity of Bolts for Valve Installation Bolt Connection of Wafer Butterfly Valve ### EN1092-1 PN10/16 ISO7005 PN10/16 DIN2501 PN10/16 | | | | 1 | .0Mpa | | | | 1.6 | Мра | | |------|-----------------------------------|---------|---|-------|-----------------------------------|-----|---------|--|------|---------| | size | Stud Bolt for Type of wafer valve | | Hexagon Heed Bolt for Type of Lug valve | | Stud Bolt for Type of wafer valve | | | Hexagon Heed Bolt for Type of
Lug valve | | | | inch | Qty | Dia×L1 | Length | Qty | Dia×L1 | Qty | Dia×L1 | Length | Qty | Dia×L1 | | 50 | 4 | M16×110 | 130 | 4×2 | M16×40 | 4 | M16×110 | 130 | 4×2 | M16×40 | | 65 | 4 | M16×120 | 140 | 4×2 | M16×45 | 4 | M16×120 | 140 | 4×2 | M16×45 | | 80 | 8 | M16×120 | 140 | 8×2 | M16×45 | 8 | M16×120 | 140 | 8×2 | M16×45 | | 100 | 8 | M16×130 | 150 | 8×2 | M16×50 | 8 | M16×130 | 150 | 8×2 | M16×50 | | 125 | 8 | M16×130 | 150 | 8×2 | M16×50 | 8 | M16×130 | 150 | 8×2 | M16×50 | | 150 | 8 | M20×140 | 165 | 8×2 | M20×50 | 8 | M20×140 | 165 | 8×2 | M20×50 | | 200 | 8 | M20×150 | 175 | 8×2 | M20×55 | 12 | M20×150 | 175 | 12×2 | M20×55 | | 250 | 12 | M20×160 | 185 | 12×2 | M20×60 | 12 | M24×160 | 185 | 12×2 | M24×60 | | 300 | 12 | M20×170 | 195 | 12×2 | M20×65 | 12 | M24×170 | 195 | 12×2 | M24×65 | | 350 | 16 | M20×170 | 195 | 16×2 | M20×65 | 16 | M24×170 | 195 | 16×2 | M24×65 | | 400 | 16 | M24×190 | 220 | 16×2 | M24×75 | 16 | M27×190 | 220 | 16×2 | M27×75 | | 450 | 20 | M24×220 | 250 | 20×2 | M24×80 | 20 | M27×220 | 250 | 20×2 | M27×80 | | 500 | 20 | M24×260 | 290 | 20×2 | M24×90 | 20 | M30×260 | 290 | 20×2 | M30×90 | | 600 | 20 | M27×290 | 324 | 20×2 | M27×100 | 20 | M33×290 | 324 | 20×2 | M33×100 | | 700 | 24 | M27×290 | 324 | 24×2 | M27×100 | 24 | M33×290 | 324 | 24×2 | M33×100 | | 800 | 24 | M30×320 | 356 | 24×2 | M30×110 | 24 | M36×320 | 356 | 24×2 | M36×110 | | 900 | 28 | M30×340 | 376 | 28×2 | M30×130 | 28 | M36×340 | 376 | 28×2 | M36×130 | ## ASME B 16.5 150LB | oi-o | | | 150 | LB | | |------|---------|----------------------|--------|-------------|------------------------------| | size | Stud Bo | It for Type of wafer | valve | Hexagon Hee | d Bolt for Type of Lug valve | | inch | Qty | Dia×L1 | Length | Qty | Dia×L1 | | 50 | 4 | 5/8"×110 | 130 | 4×2 | 5/8"×40 | | 65 | 4 | 5/8"×120 | 140 | 4×2 | 5/8"×45 | | 80 | 4 | 5/8"×120 | 140 | 4×2 | 5/8"×45 | | 100 | 8 | 3/4"×130 | 150 | 8×2 | 3/4"×50 | | 125 | 8 | 3/4"×130 | 150 | 8×2 | 3/4"×50 | | 150 | 8 | 3/4"×140 | 165 | 8×2 | 3/4"×50 | | 200 | 8 | 3/4"×150 | 175 | 8×2 | 3/4"×55 | | 250 | 12 | 7/8"×160 | 185 | 12×2 | 7/8"×60 | | 300 | 12 | 7/8"×170 | 195 | 12×2 | 7/8"×65 | | 350 | 12 | 1"×170 | 195 | 12×2 | 1"×65 | | 400 | 16 | 1"×190 | 220 | 16×2 | 1"×75 | | 450 | 16 | 9/8"×220 | 250 | 16×2 | 9/8"×80 | | 500 | 20 | 9/8"×260 | 290 | 20×2 | 9/8"×90 | | 600 | 20 | 5/4"×290 | 324 | 20×2 | 5/4"×100 | | 700 | 28 | 5/4"×290 | 324 | 28×2 | 5/4"×100 | | 800 | 28 | 3/2"×320 | 356 | 28×2 | 3/2"×110 | | 900 | 32 | 3/2"×340 | 376 | 32×2 | 3/2"×130 | ## Butterfly Valve BF-736 ## Work principle This product mainly consists of body, stem, disc, seat bushings etc. The rotation of actuating device makes stem and disc revolved, which ensures on-off operations and flow control. The rotation of the actuating device ensures dependability and position disc control and position disc control and water flow control. Rotate handle wheel clockwise, the valve is close. #### Advantage - 1.Small in size and light in weight. Easy installation and maintenance. It can be mounted wherever needed. - 2. Simple and compact construction, quick 90 degrees on-off operation. - 3. Minimized operating torque, energy saving. - 4. Bubbles-tight sealing with no leakage under the pressure testing - 5. Wide selection of materials, applicable for various medium. - 6.Long service life. Standing the test of tens of thousands opening/closing operations. - 7. Flow curve tending to straight line. Excellent regulation performance. ### Trouble & remedy | Trouble | cause | remedy | |---|---|---| | Leakage in sealing
area | Disc sealing area or body sealing seat scratched, disc is not closed completely. Hexagonal socket head bolts on clamping ring are not tightened completely. | Repair the disc sealing replace repair the body sealing seat, adjust actuator to close the disc completely, tighten loosed hexagonal socket head bolts. | | Leakage in shaft end | The seat or The 'O' ring is not pressed completely. | Replace the body sealing seat | | Leakage in joint area
between valve face
and relevant flange
on pipeline | Connection bolts are not screwed up uniformly. | Tighten the connection bolts evenly. | Rhinoflex Valve Solutions Pty.Ltd 4/7 Holder Way , Malaga, Western Australia 6090 Phone: +61 08 61130808 Email: sales@rfvs.com.au Web: www.rfvs.com.au